Correction de l'interrogation n°7

Exercice 1. R.O.C, Polynésie-juin 2005

(4 points)

 $Pr\'erequis: Th\'eor\`eme des valeurs interm\'ediaires « Soit I un intervalle, a et b deux r\'eels de I tels que a < b.$

Soit f une fonction continue sur I, soit k un réel compris entre f(a) et f(b), alors:

il existe au moins un réel c dans [a;b] tel que f(c) = k ».

Démontrer le théorème suivant :

Théorème 1 : théorème de la bijection

Soit f une fonction continue et strictememnt monotone sur un intervalle I. Soit a et b deux réels de I tels que a < b.

Soit k un réel compris entre f(a) et f(b) alors :

il existe un unique c dans [a;b] tel que f(c)=k

- L'existence est assuré par le théorème des valeurs intermédiaires.
- L'unicité découle donc de la stricte monotonie de la fonction f. On sait qu'il un réel c dans [a;b] tel que f(c)=k.

Considérons le cas où f est une fonction strictement croissante sur [a;b], alors pour tout x < c on a f(x) < f(c) et pour tout x > c on a f(x) > f(c) = k, autrement dit pour tout $x \neq c$ de l'intervalle [a;b] on a $f(x) \neq f(c)$, par conséquent c est unique.

Exercice 2. (6 points)

On considère la fonction f définie sur $\mathbb R$ par

$$f(x) = x^3 - 30x^2 + 112$$

On souhaite étudier le signe de la fonction f

- 1. La fonction f est continue sur \mathbb{R} puisque c'est une fonction polynôme.
- 2. La limite de f en $+\infty$ et en $-\infty$ est la limite de son monôme de plus haut degré :

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty$$

3. On a, pour tout $x \in \mathbb{R}$:

$$f'(x) = 3x^2 - 60x = 3x(x - 20)$$

x	$-\infty$	0		20		$+\infty$
f'(x)	+	- 0	_	0	+	
f	$-\infty$	112	•	-3888	<i></i> *	+∞

- 4. Sur l'intervalle $]-\infty;0]$ la fonction f est strictement croissante (donc monotone) et continue sur \mathbb{R} , de plus f(0)=112>0 et la limite de f en $-\infty$ vaut $-\infty$, par conséquent d'après le théorème de la bijection f possède une unique racine dans $]-\infty;0]$.
 - Sur l'intervalle $[20; +\infty]$ la fonction f est strictement croissante (donc monotone) et continue sur \mathbb{R} , de plus f(20) = -3888 < 0 et la limite de f en $+\infty$ vaut $+\infty$, par conséquent d'après le théorème de la bijection f possède une unique racine dans $[20; +\infty]$.
 - Sur l'intervalle [0; 20] la fonction f est strictement décroissante (donc monotone) et continue sur \mathbb{R} , de plus f(20) = -3888 < 0 et f(0) = 112 > 0, par conséquent d'après le théorème de la bijection f possède une unique racine dans [0; 20].
 - L'équation f(x) = 0 admet donc trois solutions dans \mathbb{R} .

5.
$$\mathscr{S} = \left\{ 2; 14 - 6\sqrt{7}; 14 + 6\sqrt{7} \right\}$$

x	$-\infty$		$14 - 6\sqrt{7}$		2		14 + 6	7	$+\infty$
f(x)		_	0	+	0	_	0	+	

Exercice 1. R.O.C (4 points)

On considère la fonction partie entière E qui a tout x réel associe le plus grand entier inférieur ou égal à x. Montrer que la fonction partie entière est discontinue pour tout $n \in \mathbb{N}$.

Preuve

Cette fonction admet des discontinuités en tout entier, en effet on a :

$$\lim_{x \to n^+} E(x) = n \quad \text{et} \quad \lim_{x \to n^-} E(x) = n - 1$$

Les limites à droite et à gauche étant différente, la fonction partie entière n'admet pas de limite en n, elle est donc discontinue en n pour tout entier n.

Exercice 2. (6 points)

1. (a) Démontrer que l'équation $x^3 + 3x = 5$ admet une solution et une seule dans \mathbb{R} . Noton P la fonction définie sur \mathbb{R} par

$$P(x) = x^3 + 3x - 5$$

Pour tout $x \in \mathbb{R}$ on a :

$$P'(x) = 3x^2 + 3 = 3(x^2 + 1) > 0$$

Par conséquent la fonction P est strictement croissante sur \mathbb{R} , de plus la limite de P en $+\infty$ et en $-\infty$ est la limite de son monôme de plus haut degré :

$$\lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to -\infty} P(x) = \lim_{x \to -\infty} x^3 = -\infty$$

Comme la fonction P est un polynôme de degré 3, P est continue, donc d'après le théorème de la bijection l'équation P(x) = 0 admet une unique solution que nous noterons α dans \mathbb{R} .

(b) En utilisant la calculatrice, on peut dresser un tableau de valeurs de f(x) qui nous permet d'affirmer que

$$1,15 < \alpha < 1,16$$

Une valeur approchée de α à 0,01 près est donc 1,15

2. (a) Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = \begin{cases} x^2 - 1 & \text{si } x < 0 \\ x - 1 & \text{si } x > 0 \end{cases}$$

f est continue sur \mathbb{R}^* car f est une fonction polynôme. De plus f est continue en 0 car :

$$\lim_{x \to 0^{-}} f(x) = -1 = f(0)$$

(b) Quelle valeur de a faut-il choisir pour que la fonction définie par :

$$f(x) = \begin{cases} \frac{\sqrt{x+1} - 1}{x} & \text{si } x \in [-1; 0[\cup]0; +\infty[\\ a & \text{si } x = 0 \end{cases}$$

La fonction f est continue en 0 si et seulement si :

$$\lim_{x \to 0} f(x) = f(0) = a$$

Il faut donc calculer la limite suivante (qui est une forme indéterminée du type $\frac{0}{0}$:

$$\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x}$$

Procédons comme habituellement avec les racines carrées, en multipliant numérateur et dénominateur par la quantité conjuguée :

$$\frac{\sqrt{x+1}-1}{x} \times \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1} = \frac{x+1-1}{x(\sqrt{x+1}+1)} = \frac{1}{\sqrt{x+1}+1}$$

On peut désormais conclure car on vient de lever l'indétermination :

$$\lim_{x \to 0} \sqrt{x+1} + 1 = 2 \Longrightarrow \lim_{x \to 0} f(x) = \frac{1}{2}$$

En choisissant $a = \frac{1}{2} f$ est alors une fonction continue sur \mathbb{R} .