Correction du devoir Maison 10

1. Étant donné le point M d'affixe

$$z = 1 + e^{2i\theta}$$

et A d'affixe 1, on a

$$AM = |z_M - z_A| = |e^{2i\theta}| = 1$$

M appartient donc au cercle \mathcal{C} de centre A et rayon 1.

2. Si B a pour affixe $z_B=2$, l'angle $(\overrightarrow{AB},\overrightarrow{AM})$ est un argument de

$$\frac{z - z_A}{z_B - z_A} = e^{2i\theta}$$

L'argument 2θ est donc une mesure de $\left(\overrightarrow{AB},\overrightarrow{AM}\right)$.

Quand θ décrit l'intervalle $]0, \pi[$, 2θ décrit $]0, 2\pi[$ et l'ensemble E des points M tels que

$$\left(\overrightarrow{AB}, \overrightarrow{AM}\right) = 2\theta$$

est donc le cercle $\mathcal C$ privé du d'affixe

$$1 + e^0 = 2$$

c'est à dire B.

$$E = \mathcal{C} \setminus \{B\}$$

3. Soit M' d'affixe z', image de M par la rotation de centre O et d'angle -2θ . On a :

$$z' = e^{-2i\theta}z = e^{-2i\theta} (1 + e^{2i\theta}) = e^{-2i\theta} + 1.$$

Étant donné que

$$\overline{z} = \overline{1 + e^{2i\theta}} = \overline{1} + \overline{e^{2i\theta}} = 1 + e^{-2i\theta}$$

on en déduit que

$$z' = \overline{z}$$

et que M' appartient aussi à \mathcal{C} car

$$|z'-1| = |e^{-2i\theta}| = 1$$

- 4. a. L'image C' du cercle C par la rotation r de centre O et angle $-\frac{2\pi}{3}$ est le cercle de centre A' et rayon 1. A' a pour affixe
 - $z_A e^{-i\frac{2\pi}{3}} = e^{-i\frac{2\pi}{3}}$
 - **b.** Pour $\theta = \frac{\pi}{3}$, on a

$$\frac{z_M}{z_A} = 1 + e^{i\frac{2\pi}{3}} = 1 - \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{i\frac{\pi}{3}}$$

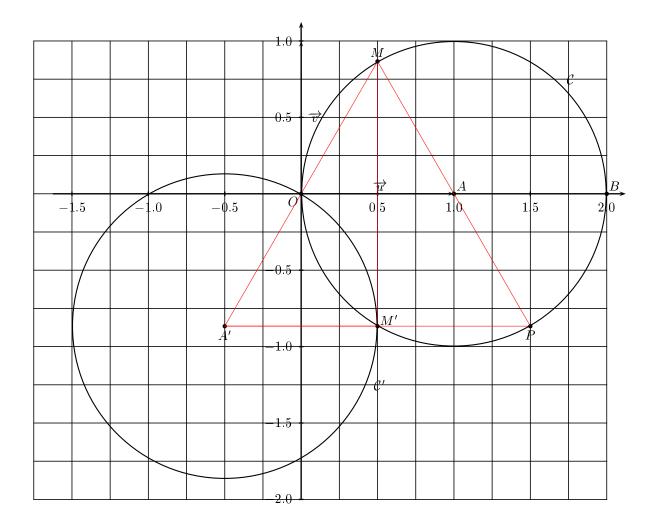
M est donc le transformé de A par la rotation de centre O et angle $\frac{\pi}{3}$, ceci suffit à prouver que le triangle AMO est équilatéral.

c. Le point O appartient aux deux cercles C et C' car OA' = OA = 1, et ces deux cercles se recoupent en M' car l'affixe de M' est

$$\left(1 + e^{i\frac{2\pi}{3}}\right)e^{-i\frac{2\pi}{3}} = e^{-i\frac{2\pi}{3}} + 1$$

On a donc

$$A'M' = \left| e^{-i\frac{2\pi}{3}} + 1 - e^{-i\frac{2\pi}{3}} \right| = 1$$



 et

$$OM' = \left| \frac{1}{2} - i \frac{\sqrt{3}}{2} \right| = \left| e^{-i\frac{\pi}{3}} \right| = 1$$

d. Le point P symétrique de M par rapport à A a une affixe z_P qui vérifie

$$\frac{z_P + z_M}{2} = z_A$$

D'où

$$z_P = 2z_A - z_M = 2 - e^{i\frac{\pi}{3}} = \frac{3}{2} - i\frac{\sqrt{3}}{2}$$

Le milieu de $[A^\prime P]$ a pour affixe

$$\frac{e^{-i\frac{2\pi}{3}} + \frac{3}{2} - i\frac{\sqrt{3}}{2}}{2} = \frac{1}{2} - i\frac{\sqrt{3}}{2}$$

Ce complexe est l'affixe de M^\prime égale à

$$e^{-i\frac{2\pi}{3}} + 1 = \frac{1}{2} - i\frac{\sqrt{3}}{2}$$