Devoir Maison 4

<u>Exercice</u> 1. 2010 (5 points)

On considère la suite (u_n) définie par $u_0=1$ et pour tout $n\in\mathbb{N}$:

$$u_{n+1} = \frac{1}{3}u_n + n - 2$$

- 1. Calculer u_1 , u_2 et u_3 .
- 2. (a) Démontrer que pour tout entier naturel $n \geq 4$, $u_n \geq 0$
 - (b) En déduire que pour tout entier $n \geq 5, u_n \geq n-3$
 - (c) En déduire la limite de la suite (u_n) .
- 3. On définit la suite (v_n) par, pour tout $n \in \mathbb{N}$:

$$v_n = -2u_n + 3n - \frac{21}{2}$$

- (a) Démontrer que la suite (v_n) est une suite géométrique dont on précisera la raison. et le premier terme.
- (b) En déduire que, pour tout $n \in \mathbb{N}$,

$$u_n = \frac{25}{4} \left(\frac{1}{3}\right)^n + \frac{3}{2}n - \frac{21}{4}$$

(c) Soit la somme S_n définie pour tout entier naturel n par

$$S_n = \sum_{k=0}^n u_k$$

Déterminer l'expression de S_n en fonction de n.