Exercice 1. R.O.C (4 points)

On considère deux suites adjacentes (u_n) et (v_n) telles que :

$$v_n \leq u_n$$

- 1. Deux suites sont adjacentes si l'une est décroissante, l'autre croissante et la différence des deux converge vers 0.
- 2. (u_n) est une suite décroissante, par conséquent :

$$\forall n \in \mathbb{N} \qquad v_n \le u_n \le u_0$$

De plus (v_n) est une suite croissante, par conséquent :

$$\forall n \in \mathbb{N}$$
 $v_0 \le v_n \le u_n \le u_0$

Ainsi (v_n) est croissante et majorée (par u_0) et (u_n) est décroissante et minorée (par v_0) ce qui prouve que (u_n) et (v_n) sont deux suites croissantes.

3. On sait que:

$$\lim_{n \to +\infty} u_n - v_n = 0$$

Mais comme les deux suites (u_n) et (v_n) convergent on a aussi :

$$\lim_{n \to +\infty} u_n - v_n = \lim_{n \to +\infty} u_n - \lim_{n \to +\infty} v_n$$

Par conséquent :

$$\lim_{n \to +\infty} u_n - \lim_{n \to +\infty} v_n = 0 \Longleftrightarrow \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = \ell$$

Exercice 2. (6 points)

Soit f la fonction définie sur l'intervalle]2; $+\infty$ [par $f(x) = 4 - \frac{1}{x-2}$

- 1. Etude de f
 - (a) On a, pour tout x > 2:

$$f'(x) = 0 - \frac{-1}{(x-2)^2} = \frac{1}{(x-2)^2} > 0$$

Par conséquent f est strictement croissante sur $]2; +\infty[$.

(b) On a, pour tout x > 2:

$$f(x) = x \iff 4 - \frac{1}{x - 2} = x \iff 4(x - 2) - 1 = x(x - 2) \iff x^2 - 6x + 9 = 0 \iff (x - 3)^2 = 0 \iff x = 3$$

Ainsi $\alpha = 3$.

2. Etude de la suite (u_n)

On considère la suite (u_n) définie par $u_0 = 10$ et par : $u_{n+1} = f(u_n) = 4 - \frac{1}{u_n - 2}$

- (a) Notons $\mathscr{P}(n)$: $\alpha \leq u_{n+1} \leq u_n$.
 - Initialisation: Pour n = 0: $u_0 = 10$ et $u_1 = 4 \frac{1}{8} = \frac{31}{8}$, ainsi on a bien $3 \le u_1 \le u_0$ ce qui initialise la propriété \mathscr{P} au rang 0.
 - **Hérédité** : Supposons que la propriété $\mathscr P$ soit vraie au rang n, et montrons qu'elle est encore vraie au rang n+1.

On suppose que : $\alpha \leq u_{n+1} \leq u_n$.

On veut montrer que : $\alpha \leq u_{n+2} \leq u_{n+1}$

On a (puisque la fonction f est croissante sur $]2; +\infty[$:

$$\alpha \le u_{n+1} \le u_n \iff f(\alpha) \le f(u_{n+1}) \le f(u_n) \iff \alpha \le u_{n+2} \le u_{n+1}$$

(b) On vient de démontrer que (u_n) est une suite décroissante et minorée par 3, par conséquent (u_n) est une suite convergente, disons vers ℓ (notons qu'on est sûr que $\ell \geq 3$). De plus on a :

$$u_{n+1} = 4 - \frac{1}{u_n - 2}$$

Par passage à la limite on obtient :

$$\ell = 4 - \frac{1}{\ell - 2}$$

Or, cette équation admet 3 pour unique solution, par conséquent :

$$\ell = 3$$

Exercice 1. R.O.C (4 points)

On considère deux suites adjacentes (u_n) et (v_n) telles que :

$$v_n \le u_n$$

- 1. Deux suites sont adjacentes si l'une est décroissante, l'autre croissante et la différence des deux converge vers 0.
- 2. (u_n) est une suite décroissante, par conséquent :

$$\forall n \in \mathbb{N}$$
 $v_n \le u_n \le u_0$

De plus (v_n) est une suite croissante, par conséquent :

$$\forall n \in \mathbb{N}$$
 $v_0 \le v_n \le u_n \le u_0$

Ainsi (v_n) est croissante et majorée (par u_0) et (u_n) est décroissante et minorée (par v_0) ce qui prouve que (u_n) et (v_n) sont deux suites croissantes.

3. On sait que:

$$\lim_{n \to +\infty} u_n - v_n = 0$$

Mais comme les deux suites (u_n) et (v_n) convergent on a aussi :

$$\lim_{n \to +\infty} u_n - v_n = \lim_{n \to +\infty} u_n - \lim_{n \to +\infty} v_n$$

Par conséquent :

$$\lim_{n \to +\infty} u_n - \lim_{n \to +\infty} v_n = 0 \Longleftrightarrow \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = \ell$$

Exercice 2. (6 points)

Soit f la fonction définie sur l'intervalle $[0; +\infty[$ par $f(x) = 15 - \frac{100}{x+5}$

- 1. Etude de f
 - (a) On a, pour tout $x \ge 0$:

$$f'(x) = 0 - \frac{-100}{(x+5)^2} = \frac{100}{(x+5)^2} > 0$$

Par conséquent f est strictement croissante sur $[0; +\infty[$.

(b) On a, pour tout $x \ge 0$:

$$f(x) = x \iff 15 - \frac{100}{x+5} = x \iff 15(x+5) - 100 = x(x+5) \iff x^2 - 10x + 25 = 0 \iff (x-5)^2 = 0 \iff x = 5$$

Ainsi $\alpha = 5$.

2. Etude de la suite (u_n)

On considère la suite (u_n) définie par $u_0 = 10$ et par : $u_{n+1} = f(u_n) = 15 - \frac{100}{u_n + 5}$

- (a) Notons $\mathscr{P}(n)$: $\alpha \leq u_{n+1} \leq u_n$.
 - **Initialisation**: Pour n=0: $u_0=10$ et $u_1=15-\frac{100}{15}=\frac{115}{15}=\frac{23}{3}$, ainsi on a bien $3 \le u_1 \le u_0$ ce qui initialise la propriété \mathscr{P} au rang 0.
 - **Hérédité** : Supposons que la propriété \mathscr{P} soit vraie au rang n, et montrons qu'elle est encore vraie au rang n+1.

On suppose que : $\alpha \leq u_{n+1} \leq u_n$.

On veut montrer que : $\alpha \le u_{n+2} \le u_{n+1}$

On a (puisque la fonction f est croissante sur $[0; +\infty[$:

$$\alpha \le u_{n+1} \le u_n \iff f(\alpha) \le f(u_{n+1}) \le f(u_n) \iff \alpha \le u_{n+2} \le u_{n+1}$$

(b) On vient de démontrer que (u_n) est une suite décroissante et minorée par 5, par conséquent (u_n) est une suite convergente, disons vers ℓ (notons qu'on est sûr que $\ell \geq 5$). De plus on a :

$$u_{n+1} = 15 - \frac{100}{u_n + 5}$$

Par passage à la limite on obtient :

$$\ell = 15 - \frac{100}{\ell + 5}$$

Or, cette équation admet 5 pour unique solution, par conséquent :

$$\ell = 5$$