Exercice 1. R.O.C (4 points)

On suppose connu le résultat suivant :

La fonction $x \mapsto e^x$ est l'unique fonction φ dérivable sur \mathbb{R} telle que $\varphi' = \varphi$, et $\varphi(0) = 1$. Soit a un réel donné.

1. Pour tout $x \in \mathbb{R}$ on a:

$$f'(x) = ae^{ax} = af(x)$$

Ainsi f est solution de l'équation y' = ay

2. On a pour tout $x \in \mathbb{R}$, en remarquant que g' = ag

$$h'(x) = g'(x)e^{-ax} - g(x)ae^{-ax} = ag(x)e^{-ax} - ag(x)e^{-ax} = 0$$

Ainsi *h* est une fonction constante.

3. Comme h est une fonction constante, il existe un réel (une constante) $k \in \mathbb{R}$ telle que :

$$h(x) = k \iff g(x)e^{-ax} = k \iff g(x) = \frac{k}{e^{-ax}} = ke^{ax}$$

Ainsi toute solution g de l'équation y' = ay s'écrit sous la forme $g(x) = ke^{ax}$ avec $k \in \mathbb{R}$

Exercice 2. (6 points)

On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = xe^{-x}$$

1.

$$\lim_{x \to -\infty} x = -\infty \quad \text{et} \quad \lim_{x \to -\infty} e^{-x} = +\infty \Longrightarrow \lim_{x \to -\infty} f(x) = -\infty$$

De plus:

$$\lim_{x \to +\infty} f(x) = \langle \infty \times 0 \rangle = \text{F.I}$$

En cas de forme indéterminée (en ∞) impliquant l'exponentielle et un polynôme c'est l'exponentielle qui l'emporte, par conséquent :

$$\lim_{x \to +\infty} f(x) = 0$$

On en déduit l'existence d'une asymptote horizontale d'équation y = 0 en $+\infty$.

2.

$$f'(x) = e^{-x} - xe^{-x} = e^{-x}(1-x)$$

3. f'(x) est du signe de 1-x (puisque pour tout $x \in \mathbb{R}$ $e^{-x} > 0$, d'où :

х	$-\infty$		1		+∞
1-x		+	0	-	
f(x)	$-\infty$	/	e^{-1}		0

4. f est croissante sur] $-\infty$; 1] puis décroissante sur [1; $+\infty$ [, elle admet donc un maximum en 1 qui vaut e^{-1} .

CORRECTION DE L'INTERROGATION N° 10

Exercice 1. R.O.C (4 points)

On suppose connu le résultat suivant :

La fonction $x \mapsto e^x$ est l'unique fonction ϕ dérivable sur \mathbb{R} telle que $\phi' = \phi$, et $\phi(0) = 1$. Soit a un réel donné.

1. Pour tout $x \in \mathbb{R}$ on a:

$$f'(x) = ae^{ax} = af(x)$$

Ainsi f est solution de l'équation y' = ay

2. On a pour tout $x \in \mathbb{R}$, en remarquant que g' = ag

$$h'(x) = g'(x)e^{-ax} - g(x)ae^{-ax} = ag(x)e^{-ax} - ag(x)e^{-ax} = 0$$

Ainsi *h* est une fonction constante.

3. Comme *h* est une fonction constante, il existe un réel (une constante) $k \in \mathbb{R}$ telle que :

$$h(x) = k \iff g(x)e^{-ax} = k \iff g(x) = \frac{k}{e^{-ax}} = ke^{ax}$$

Ainsi toute solution g de l'équation y' = ay s'écrit sous la forme $g(x) = ke^{ax}$ avec $k \in \mathbb{R}$

Exercice 2. (6 points)

On considère la fonction f définie sur \mathbb{R}^* par :

$$f(x) = \frac{e^x}{x^2}$$

1.

$$\lim_{x \to -\infty} x^2 = +\infty \quad \text{et} \quad \lim_{x \to -\infty} e^x = 0 \infty \Longrightarrow \lim_{x \to -\infty} f(x) = 0$$

On en déduit que \mathscr{C}_f admet une asymptote horizontale en $-\infty$ d'équation y=0 De plus :

$$\lim_{x \to +\infty} f(x) = \frac{\infty}{\infty} = \text{EI}$$

En cas de forme indéterminée (en ∞) impliquant l'exponentielle et un polynôme c'est l'exponentielle qui l'emporte, par conséquent :

$$\lim_{x \to +\infty} f(x) = +\infty$$

2. $\forall x \in \mathbb{R}^*$, on a:

$$f'(x) = \frac{x^2 e^x - 2x e^x}{x^4} = \frac{x e^x (x - 2)}{x^4} = \frac{(x - 2) e^x}{x^3}$$

3. Pour tout x > 0, $e^x > 0$ et $x^3 > 0$, par conséquent f'(x) est du signe de (x - 2), par conséquent :

x	0		2		+∞
x-2		-	0	+	
f(x)			$\frac{e^2}{4}$	/	+∞

4. f est décroissante sur]0;2] puis croissante sur $[2;+\infty[$, elle admet donc un minimum en 2 qui vaut $\frac{e^2}{4}$.