Nom:
 Prénom:
 Classe:

Interrogation n°9

Exercice 1. R.O.C (4 points)

L'objet de cette question est de démontrer que $\lim_{x\to+\infty} \frac{e^x}{x} = +\infty$.

On suppose connu le résultat suivant :

$$\forall x \in \mathbb{R}^{+*} \qquad e^x \ge x$$

- 1. On considère la fonction g définie sur $[0; +\infty[$ par $g(x) = e^x \frac{x^2}{2}$. Montrer que pour tout x de $]0; +\infty[$, $g(x) \ge 0$. (On étudiera la fonction g pour cela).
- 2. En déduire que $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$

Exercice 2. (6 points)

On considère la fonction g définie sur \mathbb{R} par :

$$g(x) = e^{-x^2}$$

- 1. Calculer g'(x), puis étudier le signe de g'.
- 2. En déduire le tableau de variation de g.
- 3. Calculer les limites de g en $+\infty$ puis en $-\infty$.
- 4. Déterminer les éventuels extremum de g.
- 5. Calculer g''(x), puis résoudre g''(x) = 0

 Nom:
 Prénom:
 Classe:

 INTERROGATION N°9

INTERROGATION N 3

Exercice 1. R.O.C (4 points)

- 1. Montrer que $e^x > x$, pour cela étudier la fonction f définie sur \mathbb{R} par $f(x) = e^x x$.
- 2. En utilisant l'égalité précédent pour $X = \frac{x}{2}$ démontrer que pour tout $x \in \mathbb{R}^{+*}$ on a

$$\frac{e^x}{x} \ge \frac{x}{4}$$

3. En déduire la limite de $\frac{e^x}{x}$ lorsque x tend vers $+\infty$.

Exercice 2. (6 points)

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = e^x - x - 4$$

et \mathscr{C}_f sa représentation graphique dans le plan muni d'un repère orthonormal $(0; \vec{i}, \vec{j})$.

- 1. Etudier les variations de la fonction f.
- 2. En remarquant que, pour tout réel non nul *x* :

$$f(x) = x \left(\frac{e^x}{x} - 1 - \frac{4}{x} \right)$$

déterminer la limite de f en $+\infty$.

3. Démontrer que la droite \mathcal{D} d'équation x+y+4=0 est asymptote à la courbe \mathcal{C}_f en $-\infty$ et préciser la position de \mathcal{C}_f par rapport à \mathcal{D}