Nom: Classe:....

Interrogation n°1

On prendra soin de coller le sujet sur la copie. La note tiendra compte de la qualité de la rédaction et de l'application.

Exercice 1. (6 points)

On considère la suite (u_n) définie par :

$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{1}{2}u_n + 3 \end{cases}$$

1. Démontrer, par récurrence, que

$$u_n = -4 \times \left(\frac{1}{2}\right)^n + 6$$

- 2. Soit la suite (v_n) définie par $v_n = u_n 6$ pour tout $n \in \mathbb{N}$
 - (a) Démontrer que (v_n) est géométrique.
 - (b) En déduire v_n en fonction de n.

Exercice 2. (4 points)

Déterminer le sens de variation des suites suivantes :

1.
$$u_n = \frac{n^2}{n+1}, \forall n \in \mathbb{N}$$

2. $\forall n \in \mathbb{N}, v_{n+1} = \sqrt{v_n + 2}$ et $v_0 = -1$ (On montrera par récurrence la propriété $\mathscr{P}(n): v_{n+1} \geq v_n$.)

Interrogation n°1

On prendra soin de coller le sujet sur la copie. La note tiendra compte de la qualité de la rédaction et de l'application.

Exercice 1. (6 points)

On considère la suite (u_n) définie par :

$$\begin{cases} u_0 = 5 \\ u_{n+1} = \frac{3}{2}u_n - 1 \end{cases}$$

1. Démontrer, par récurrence, que

$$u_n = 3 \times \left(\frac{3}{2}\right)^n + 2$$

- 2. Soit la suite (v_n) définie par $v_n = u_n 2$ pour tout $n \in \mathbb{N}$
 - (a) Démontrer que (v_n) est géométrique.
 - (b) En déduire v_n en fonction de n.

Exercice 2. (4 points)

Déterminer le sens de variation des suites suivantes :

1.
$$u_n = \frac{3}{4n+2}, \forall n \in \mathbb{N}$$

2. $\forall n \in \mathbb{N}, v_{n+1} = \sqrt{v_n + 2} \text{ et } v_0 = 6 \text{ (On montrera par récurrence la propriété } \mathcal{P}(n) : v_{n+1} < v_n)$