Interrogation N°16

Exercice 1. (6 points)

On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = xe^x$$

- 1. Calculer f'(x) pour tout $x \in \mathbb{R}$, ainsi que les limites de f en $+\infty$ et en $-\infty$.
- 2. En déduire les variations de la fonction f.
- 3. A l'aide d'une intégration par parties, calculer

$$I = \int_0^3 f(x)dx$$

Exercice 2. (4 points)

Soit f la fonction définie pour tout $x \in \mathbb{R}^+$ par :

$$f(x) = \frac{1-x}{1+x}$$

- 1. Démontrer que F définie sur \mathbb{R}^+ par $F(x)=2\ln(x+1)-x$ est une primitive sur \mathbb{R}^+ de la fonction f.
- 2. En déduire :

$$\int_0^1 \frac{1-x}{1+x} dx$$

Interrogation N°16

Exercice 1. (4 points)

Soit f la fonction définie pour tout $x \in \mathbb{R}$ par :

$$f(x) = \frac{1 - x^2}{(1 + x^2)^2}$$

- 1. Démontrer que F définie sur \mathbb{R} par $F(x) = \frac{x}{1+x^2}$ est une primitive sur \mathbb{R} de la fonction f.
- 2. En déduire :

$$\int_0^1 \frac{1 - x^2}{(1 + x^2)^2} dx$$

Exercice 2. (6 points)

On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = xe^{-x}$$

- 1. Calculer f'(x) pour tout $x \in \mathbb{R}$, ainsi que les limites de f en $+\infty$ et en $-\infty$.
- 2. En déduire les variations de la fonction f.
- 3. A l'aide d'une intégration par parties, calculer

$$I = \int_0^3 f(x)dx$$