
SUJET A

On prendra soin de coller le sujet sur la copie. La note tiendra compte de la qualité de la rédaction et de l'application.

Exercice 1. 5 points

On considère la représentation graphique d'une fonction f définie sur [-5;10]:

1. Lire graphiquement:

$$f'(-4)$$
 ; $f'(-3)$; $f'(-1)$; $f'(2)$; $f'(3)$; $f'(5)$ et $f'(8)$

2. Déterminer l'équation des tangentes :

- (a) T_1 au point d'abscisse a = -3 de \mathcal{C}_f ;
- (b) T_2 au point d'abscisse a = 2 de \mathcal{C}_f ;
- (c) T_3 au point d'abscisse a = 3 de \mathcal{C}_f .

Exercice 2. 5 points

On considère la fonction f définie sur $\mathbb{R} \setminus \{2\}$ par :

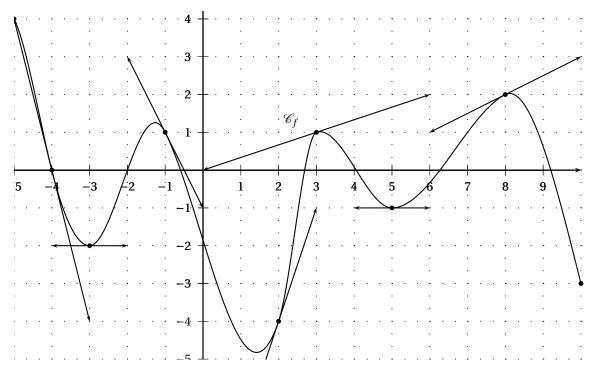
$$f(x) = \frac{3}{x-2}$$

On note \mathcal{C}_f sa représentation graphique dans un repère du plan.

1. Montrer que pour tout $h \neq 0$ on a :

$$\frac{f(4+h)-f(4)}{h} = \frac{-3}{2(2+h)}$$

- 2. En déduire f'(4), le nombre dérivé de f en 4. Interpréter graphiquement.
- 3. Déterminer l'équation de la tangente T au point d'abscisse a = 4 de \mathcal{C}_f .


Interrogation n°11

SUJET B

On prendra soin de coller le sujet sur la copie. La note tiendra compte de la qualité de la rédaction et de l'application.

Exercice 1. 5 points

On considère la représentation graphique d'une fonction f définie sur [-5;10]:

1. Lire graphiquement:

$$f'(-4)$$
 ; $f'(-3)$; $f'(-1)$; $f'(2)$; $f'(3)$; $f'(5)$ et $f'(8)$

2. Déterminer l'équation des tangentes :

- (a) T_1 au point d'abscisse a = -3 de \mathcal{C}_f ;
- (b) T_2 au point d'abscisse a = -1 de \mathcal{C}_f ;
- (c) T_3 au point d'abscisse a = 8 de \mathcal{C}_f .

Exercice 2. 5 points

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = x^2 - 5x + 1$$

On note \mathscr{C}_f sa représentation graphique dans un repère du plan.

1. Montrer que pour tout $h \neq 0$ on a :

$$\frac{f(4+h)-f(4)}{h}=h+3$$

- 2. En déduire f'(4), le nombre dérivé de f en 4. Interpréter graphiquement.
- 3. Déterminer l'équation de la tangente T au point d'abscisse a = 4 de \mathcal{C}_f .