DEVOIR MAISON 3BIS: RÉVISIONS

Exercice 1:

Une seule boule

PARTIE A:

1. $X \in \{-3; 2\}$

	x_i	-3	2	Total
2.	$P(X = x_i)$	$\frac{n}{n+5}$	$\frac{5}{n+5}$	$\frac{n+5}{n+5} = 1$

- 3. $E(X) = -3 \times \frac{n}{n+5} + 2 \times \frac{5}{n+5} = \dots = \frac{-3n+10}{n+5}$
- **4.** Le jeu est défavorable lorsque E(X) < 0 \iff $\frac{-3n+10}{n+5}$ < 0.

Or $n \ge 3$ donc n + 5 > 0. On cherche donc n tel que $-3n + 10 < 0 \iff -3n < -10 \iff n > \frac{10}{3}$. Comme *n* est entier, on peut conclure que le jeu est défavorable pour tout $n \ge 4$.

PARTIE B: Deux boules avec remise

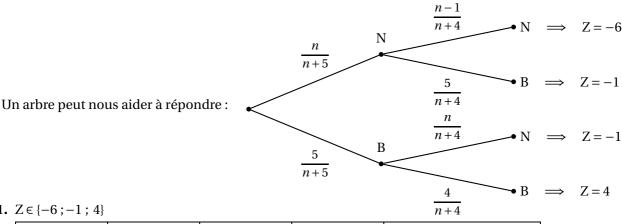


	y_i	-6	-1	4	Total
2.	$P(Y = y_i)$	$\frac{n^2}{(n+5)^2}$	$\frac{10n}{(n+5)^2}$	$\frac{25}{(n+5)^2}$	$\frac{n^2 + 10n + 25}{(n+5)^2} = 1$

- 3. $E(Y) = -6 \times \frac{n^2}{(n+5)^2} 1 \times \frac{10n}{(n+5)^2} + 4 \times \frac{25}{(n+5)^2} = \dots = \frac{-6n^2 10n + 100}{(n+5)^2}$
- **4.** Le jeu est défavorable lorsque E(Y) < 0 \iff $\frac{-6n^2 10n + 100}{(n+5)^2} \iff$ $-6n^2 10n + 100$. Or $\Delta = (-10)^2 4 \times (-6) \times 100 = \dots = 2500 = 50^2$. D'où $n_1 = \frac{10 50}{-12} = \frac{10}{3}$ et $n_2 = \frac{10 + 50}{-12} < 0$ -6 < 0 donc le trinôme $-6n^2 - 10n + 100$ est négatif à l'extérieur des racines n_1 et n_2

Comme $n \ge 3$ et n entier, on peut conclure que le jeu est défavorable pour tout $n \ge 4$

PARTIE C: Deux boules sans remise



1.	$Z \in \{$	$\{-6$; -1	l ;	4}

	z_i	-6	-1	4	Total
2.	$D(Z - z_i)$	n(n-1)	10 <i>n</i>	20	$n(n-1) + 10n + 20_{-1}$
	$P(Z=z_i)$	(n+5)(n+4)	(n+5)(n+4)	(n+5)(n+4)	$\frac{n(n-1)+10n+20}{(n+5)(n+4)} = 1$

3.
$$E(Z) = -6 \times \frac{n(n-1)}{(n+5)(n+4)} - 1 \times \frac{10n}{(n+5)(n+4)} + 4 \times \frac{20}{(n+5)(n+4)} = \dots = \frac{-6n^2 - 4n + 80}{(n+5)(n+4)}$$

4. Le jeu est défavorable lorsque $E(Z) < 0 \iff \frac{-6n^2 - 4n + 80}{(n+5)(n+4)}$

Or $n \ge 3$ donc cela revient à chercher n tel que $-6n^2 - 4n + 80 < 0$.

Or
$$\Delta = (-4)^2 - 4 \times (-6) \times 80 = \dots = 1936 = 44^2$$
.

D'où
$$n_1 = \frac{4-44}{-12} = \frac{10}{3}$$
 et $n_2 = \frac{4+44}{-12} < 0$

-6 < 0 donc le trinôme $-6n^2 - 4n + 80$ est négatif à l'extérieur des racines n_1 et n_2

Comme $n \ge 3$ et n entier, on peut conclure que le jeu est défavorable pour tout $n \ge 4$

PARTIE D:

Avec une mise de départ

Dans cette question, pour pouvoir jouer, on doit donner 4 €.

- 1. Avec une mise de départ de $4 \in$ on obtient les nouvelles espérances suivantes : E(X') = E(X 4) = $E(X) - 4 = \frac{-3n + 10}{n + 5} - 4 = \dots = \frac{-7n - 10}{n + 5} < 0 \text{ car } n > 0 \text{ E}(Y') = E(Y - 4) = E(Y) - 4 = \frac{-6n^2 - 10n + 100}{(n + 5)^2} - 4 = \dots = \frac{-10n^2 - 50n}{(n + 5)^2} < 0 \text{ car } n > 0 \text{ E}(Z') = E(Z - 4) = E(Z) - 4 = \frac{-6n^2 - 4n + 80}{(n + 5)(n + 4)} - 4 = \dots = \frac{-10n^2 - 40n}{(n + 5)(n + 4)} < 0$
- 2. Les trois espérances sont clairement négatives pour tout $n \ge 3$, donc aucun jeu n'est intéressant, pour n'importe quelle valeur de n.

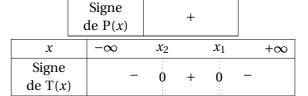
Exercice 2:

 $-\infty$

 $+\infty$

a. $\Delta_P = ... = -1 < 0$ donc P n'a pas de racine réelle. On en déduit le tableau de signe ci-contre (a > 0):

$\Delta_{\rm T} = = 29 > 0$	
Donc $x_1 = = \frac{9 + \sqrt{29}}{2}$ et	$9 - \sqrt{29}$
Donc $x_1 = = {2}$ et	$x_2 = = {2}$.
On en déduit le tableau de	signe ci-contre ($a < 0$):



- **b.** P(0) = ... = 5 et T(0) = -13.
- 2. **a.** P(0) = 5 donc \mathscr{C}_P coupe l'axe des ordonnées en (0; 5). P n'a pas de racine réelle, donc \mathscr{C}_{P} ne coupe pas l'axe des abscisses.
 - **b.** T(0) = -13 donc \mathcal{C}_T coupe l'axe des ordonnées en (0; -13). T possède deux racines réelles x_1 et x_2 , donc \mathcal{C}_T coupe l'axe des abscisses en $(x_1; 0)$ et $(x_2; 0)$.
 - **c.** D'après le tableau de signes de P(x), on peut dire que \mathscr{C}_P est toujours au-dessus de l'axe des abscisses.

d. D'après le tableau de signes de T(x), on peut dire que \mathcal{C}_T est au-dessus de l'axe des abscisses si et seulement si $x \in]x_2$; $x_1[$

3. **a.**
$$P(x) = T(x) \iff P(x) - T(x) = 0 \iff ... \iff \frac{3}{2}x^2 - 12x + 18 = 0$$

 $\Delta_{P-T} = ... = 36 = 6^2$ Donc $x_1 = ... = 2$ et $x_2 = ... = 6$.

Nous avons trouvé les abscisses des points d'intersection.

Cherchons les ordonnées correspondantes, ie les images de 2 et 6 par P ou T, comme l'on veut puisque ce sont les mêmes. T(2) = ... = 1 et T(6) = ... = 5.

Les courbes se coupent en (2; 1) et (6; 5)

b. \mathscr{C}_P est au-dessus de \mathscr{C}_T si et seulement si $P(x) - T(x) > 0 \iff \frac{3}{2}x^2 - 12x + 18 > 0$

On a donc le tableau suivant :					
x	$-\infty$	2	6 +∞		
Signe de		_			
P(x) - T(x)	+	<u> </u>	0 +		
Ordre de $P(x)$ et $T(x)$	P(x) > T(x)	P(x) < T(x)	P(x) > T(x)		
Position relative des courbes	$\mathscr{C}_{ ext{P}}$ au-dessus de $\mathscr{C}_{ ext{T}}$	$\mathscr{C}_{ ext{P}}$ en-dessous de $\mathscr{C}_{ ext{T}}$	$\mathscr{C}_{ ext{P}}$ au-dessus de $\mathscr{C}_{ ext{T}}$		

- 1. Résoudre, dans \mathbb{R} , les équations trigonométriques suivantes :
 - **a.** $\sin x = -1$

Un unique point du cercle est associé à des réels dont le sinus vaut -1; ces réels sont de la forme $-\frac{\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$; ce qui nous permet de conclure que :

$$\mathscr{S} = \left\{ -\frac{\pi}{2} + 2k\pi \quad \text{avec} \quad k \in \mathbb{Z} \right\}$$

b. $\sin x = 2$

Nous savons que pour tout réel $x-1 \le \sin x \le 1$, par conséquent il n'existe aucun nombre réel tel que $\sin x = 2$.

$$\mathcal{S} = \emptyset$$

c. $\sin x = -\frac{1}{2}$

Deux points du cercle trigonométrique sont associés à des réels dont le sinus vaut $-\frac{1}{2}$, les premiers sont tous de la forme $-\frac{\pi}{6} + 2k\pi$ où $k \in \mathbb{Z}$ et les autres sont de la forme $\frac{-5\pi}{6} + 2k\pi$ où $k \in \mathbb{Z}$ ce qui donne :

$$\mathcal{S} = \left\{ -\frac{\pi}{6} + 2k\pi \quad \text{avec} \quad k \in \mathbb{Z}; \frac{-5\pi}{6} + 2k\pi \quad \text{avec} \quad k \in \mathbb{Z} \right\}$$

2. On sait que pour tout réel x on a $\cos^2 x + \sin^2 x = 1 \iff \cos^2 x = 1 - \sin^2 x$ D'où:

 $2\sin^3 x + \cos^2 x - 5\sin x - 3 = 0 \iff 2\sin^3 x + 1 - \sin^2 x - 5\sin x - 3 = 0 \iff 2\sin^3 x - \sin^2 x - 5\sin x - 2 = 0$

C. Aupérin Lycée Jules Fil 3/4
c. auperin@wicky-math.fr.nf 1G4 - 2014-2015

PARTIE B: Polynômes

1.

$$P(-1) = 2 \times (-1)^3 - (-1)^2 - 5 \times (-1) - 2 = -2 - 1 + 5 - 2 = 0$$

2. Supposons qu'il existe trois réels a, b et c qui vérifient $P(X) = (X+1)(aX^2+bX+c)$. Dans ce cas :

$$P(X) = aX^{3} + bX^{2} + cX + aX^{2} + bX + c$$

$$\iff 2X^{3} - X^{2} - 5X - 2 = aX^{3} + (b+a)X^{2} + (c+b)X + c$$

Donc en choisissant a, b, c tels que $\begin{cases} a=2 \\ b+a=-1 \\ c+b=-5 \\ c--2 \end{cases} \iff \begin{cases} a=2 \\ b=-3 \\ b=-3 \\ c=-2 \end{cases}$ on a l'égalité voulue.

On vient de démontrer que :

$$P(X) = 2X^3 - X^2 - 5X - 2 = (X + 1)(2X^2 - 3X - 2)$$

3.

$$P(X) = 0 \iff (X+1)(2X^2 - 3X - 2) = 0$$

Or, un produit est nul si et seulement si un des facteurs est nul d'où:

$$P(X) = 0 \iff X + 1 = 0 \quad \text{ou} \quad 2X^2 - 3X - 2 = 0$$

 $\iff X = -1 \quad \text{ou} \quad 2X^2 - X - 2 = 0$

Pour résoudre $2X^2 - 3X - 2 = 0$ calculons le discriminant $\Delta = b^2 - 4ac = 9 - 4 \times 2 \times (-2) = 25$ donc l'équation $2X^2 - 3X - 2 = 0$ admet deux solutions :

$$X_1 = \frac{3 + \sqrt{25}}{4} = 2$$
 et $X_2 = \frac{3 - 5}{4} = -\frac{1}{2}$

Au final le polynôme P admet 3 racines qui sont -1; $-\frac{1}{2}$ et 2.

PARTIE C: Trigonométrie

1. On cherche à résoudre (E), ce qui revient à résoudre $2\sin^3 x - \sin^2 x - 5\sin x - 2 = 0$ puisque cette équation a les mêmes solutions que l'équation (E) d'après la question A2. En posant $X = \sin x$ cette dernière équation devient :

$$2X^3 - X^2 - 5X - 2 = 0 \iff P(X) = 0 \iff X = -1$$
 ou $X = -\frac{1}{2}$ ou $X = 2$

Ainsi l'ensemble des solutions x de (E) vérifient

$$\sin x = -1$$
 ou $\sin x = -\frac{1}{2}$ ou $\sin x = 2$

On utilise alors les résultats de la première question pour déduire l'ensemble des solutions de (E) que voici:

$$\mathcal{S} = \left\{ -\frac{\pi}{2} + 2k\pi \quad \text{avec} \quad k \in \mathbb{Z} \; ; \; -\frac{\pi}{6} + 2k\pi \quad \text{avec} \quad k \in \mathbb{Z} \; ; \; \frac{-5\pi}{6} + 2k\pi \quad \text{avec} \quad k \in \mathbb{Z} \right\}$$

2. Figure évidente.