► DEVOIR MAISON 11 ► MATRICE - ETUDIER UN PROCESSUS ÉVOLUTIF ALÉATOIRE

Exercice 1. Dans une grande ville (dont on suppose que la population reste globalement constante), on cherche à étudier les mouvements de population entre la banlieue et le centre-ville. On considère pour cela que, si on choisit au hasard un habitant de la banlieu, il a une probabilité de 0,03 de déménager en centre-ville l'année suivante; de même si on choisit au hasard un habitant du centre-ville, il a une probabilité de 0,07 de déménager en banlieue l'année suivante. On note A l'état « habiter en centre-ville » et B l'état « habiter en banlieue ». On identifiera l'ensemble des états $\{A;B\}$ à l'ensemble $\{1;2\}$. Soit X_n la variable aléatoire donnant l'état d'un habitant pris au hasard à l'année n. On suppose que la loi de probabilité de X_0 (ce qu'on l'on appelera la loi de probabilité initiale) est donnée par le

vecteur-colonne
$$U_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$
 (on a notamment $x_0 + y_0 = 1$)

- 1. Dessiner un graphe et écrire la matrice de transition T relative à ce processus.
- 2. On choisit $x_0 = 0,3$. Calculer les matrices-colonnes U_1 et U_2 associées aux lois de probabilités des variables aléatoires X_1 et X_2 . Que constate-t-on?
- 3. Dans cette question on choisit $x_0 = 0,2$. Grâce à une calculatrice, calculer les lois de probabilités U_3 , U_5 , U_{10} et U_{30} (arrondir les résultats au millième. Que peut-on dire de l'évolution de la répartition de la population entre centre ville et banlieue au cours des années?