RÉVISIONS ALGO ET SUITES

I) Pondichéry avril 2013

(6 points)

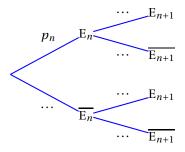
Dans une entreprise, on s'intéresse à la probabilité qu'un salarié soit absent durant une période d'épidémie de grippe.

- Un salarié malade est absent
- La première semaine de travail, le salarié n'est pas malade.
- Si la semaine n le salarié n'est pas malade, il tombe malade la semaine n+1 avec une probabilité égale à 0,04.
- Si la semaine n le salarié est malade, il reste malade la semaine n+1 avec une probabilité égale à 0,24.

On désigne, pour tout entier naturel n supérieur ou égal à 1, par E_n l'évènement « le salarié est absent pour cause de maladie la n-ième semaine ». On note p_n la probabilité de l'évènement E_n .

On a ainsi : $p_1 = 0$ et, pour tout entier naturel n supérieur ou égal à $1 : 0 \le p_n < 1$.

- **1. a.** Déterminer la valeur de p_3 à l'aide d'un arbre de probabilité.
 - **b.** Sachant que le salarié a été absent pour cause de maladie la troisième semaine, déterminer la probabilité qu'il ait été aussi absent pour cause de maladie la deuxième semaine.
- 2. a. Recopier sur la copie et compléter l'arbre de probabilité donné ci-dessous



- **b.** Montrer que, pour tout entier naturel *n* supérieur ou égal à 1, $p_{n+1} = 0.2p_n + 0.04$.
- **c.** Montrer que la suite (u_n) définie pour tout entier naturel n supérieur ou égal à 1 par $u_n = p_n 0.05$ est une suite géométrique dont on donnera le premier terme et la raison r. En déduire l'expression de u_n puis de p_n en fonction de n et r.
- **d.** En déduire la limite de la suite (p_n) .
- **e.** On admet dans cette question que la suite (p_n) est croissante. On considère l'algorithme suivant :

Variables	K et J sont des entiers naturels, P est un nombre réel	
Initialisation	P prend la valeur 0	
	J prend la valeur 1	
Entrée	Saisir la valeur de K	
Traitement	Tant que $P < 0.05 - 10^{-K}$	
	P prend la valeur $0.2 \times P + 0.04$	
	J prend la valeur J +1	
	Fin tant que	
Sortie	Afficher J	

À quoi correspond l'affichage final J?

Pourquoi est-on sûr que cet algorithme s'arrête?

3. Cette entreprise emploie 220 salariés. Pour la suite on admet que la probabilité pour qu'un salarié soit malade une semaine donnée durant cette période d'épidémie est égale à p = 0.05.

On suppose que l'état de santé d'un salarié ne dépend pas de l'état de santé de ses collègues.

On désigne par X la variable aléatoire qui donne le nombre de salariés malades une semaine donnée.

- a. Justifier que la variable aléatoire X suit une loi binomiale dont on donnera les paramètres. Calculer l'espérance mathématique μ et l'écart type σ de la variable aléatoire X.
- **b.** On admet que l'on peut approcher la loi de la variable aléatoire $\frac{X-\mu}{\sigma}$ par la loi normale centrée réduite c'est-à-dire de paramètres 0 et 1. On note Z une variable aléatoire suivant la loi normale centrée réduite.

Le tableau suivant donne les probabilités de l'évènement Z < x pour quelques valeurs du nombre réel x.

x	-1,55	-1,24	-0,93	-0,62	-0,31	0,00	0,31	0,62	0,93	1,24	1,55
P(Z < .	0,061	0,108	0,177	0,268	0,379	0,500	0,621	0,732	0,823	0,892	0,939

Calculer, au moyen de l'approximation proposée en question b., une valeur approchée à 10^{-2} près de la probabilité de l'évènement : « le nombre de salariés absents dans l'entreprise au cours d'une semaine donnée est supérieur ou égal à 7 et inférieur ou égal à 15 ».

II) Liban mai 2013

(5 points)

On considère la suite numérique (v_n) définie pour tout entier naturel n par

$$\begin{cases} v_0 = 1 \\ v_{n+1} = \frac{9}{6 - v_n} \end{cases}$$

Partie A

On souhaite écrire un algorithme affichant, pour un entier naturel *n* donné, tous les termes de la suite, du rang 0 au rang
 n. Parmi les trois algorithmes suivants, un seul convient. Préciser lequel en justifiant la réponse.

Algorithme No 2

Algorithme Nº 1		
Variables:		
v est un réel		
i et n sont des entiers naturels		
Début de l'algorithme :		
Lire n		
v prend la valeur 1		
Pour <i>i</i> variant de 1 à <i>n</i> faire		
v prend la valeur $\frac{9}{6-v}$		
Fin pour		
Afficher <i>v</i>		
Fin algorithme		

Variables: v est un réel i et n sont des entiers naturels Début de l'algorithme: Lire nPour i variant de 1 à n faire v prend la valeur 1 Afficher v v prend la valeur $\frac{9}{6-v}$ Fin pour

Algorithme No 3	
Variables:	
v est un réel	
i et n sont des entiers naturels	
Début de l'algorithme :	
Lire n	
ν prend la valeur 1	
Pour i variant de 1 à n faire	
Afficher ν	
v prend la valeur $\frac{9}{6-v}$	
Fin pour	
Afficher v	
Fin algorithme	

2. Pour n = 10 on obtient l'affichage suivant :

1	1,800	2,143	2,333	2,455	2,538	2,600	2,647	2,684	2,714
Pour $n = 100$), les derniei	rs termes aff	ichés sont :						
2.067	2 069	2 069	2 069	2 060	2 060	2.060	2.070	2.070	2.070

Quelles conjectures peut-on émettre concernant la suite (v_n) ?

- **3. a.** Démontrer par récurrence que, pour tout entier naturel n, $0 < v_n < 3$.
 - **b.** Démontrer que, pour tout entier naturel n, $v_{n+1} v_n = \frac{(3 v_n)^2}{6 v_n}$. La suite (v_n) est-elle monotone?
 - **c.** Démontrer que la suite (v_n) est convergente.

Partie B Recherche de la limite de la suite (v_n)

On considère la suite (w_n) définie pour tout n entier naturel par $w_n = \frac{1}{v_n}$

- 1. Démontrer que (w_n) est une suite arithmétique de raison $-\frac{1}{3}$
- **2.** En déduire l'expression de (w_n) , puis celle de (v_n) en fonction de n.
- **3.** Déterminer la limite de la suite (v_n) .

III) Amérique du Nord mai 2013

(5 points)

On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \sqrt{2u_n}.$$

1. On considère l'algorithme suivant :

Variables: n est un entier naturel

u est un réel positif

Initialisation : Demander la valeur de n

Affecter à u la valeur 1

Traitement : Pour i variant de 1 à n :

| Affecter à u la valeur $\sqrt{2u}$

Fin de Pour

Sortie: Afficher u

a. Donner une valeur approchée à 10^{-4} près du résultat qu'affiche cet algorithme lorsque l'on choisit n = 3.

b. Que permet de calculer cet algorithme?

c. Le tableau ci-dessous donne des valeurs approchées obtenues à l'aide de cet algorithme pour certaines valeurs de *n*.

n	1	5	10	15	20
Valeur affichée	1,4142	1,9571	1,9986	1,9999	1,9999

Quelles conjectures peut-on émettre concernant la suite (u_n) ?

- **2. a.** Démontrer que, pour tout entier naturel n, $0 < u_n \le 2$.
 - **b.** Déterminer le sens de variation de la suite (u_n) .
 - **c.** Démontrer que la suite (u_n) est convergente. On ne demande pas la valeur de sa limite.
- **3.** On considère la suite (v_n) définie, pour tout entier naturel n, par $v_n = \ln u_n \ln 2$.
 - **a.** Démontrer que la suite (v_n) est la suite géométrique de raison $\frac{1}{2}$ et de premier terme $v_0 = -\ln 2$.
 - **b.** Déterminer, pour tout entier naturel n, l'expression de v_n en fonction de n, puis de u_n en fonction de n.
 - **c.** Déterminer la limite de la suite (u_n) .
 - **d.** Recopier l'algorithme ci-dessous et le compléter par les instructions du traitement et de la sortie, de façon à afficher en sortie la plus petite valeur de n telle que $u_n > 1,999$.

Variables: n est un entier naturel

u est un réel

Initialisation : Affecter à n la valeur 0

Affecter à *u* la valeur 1

Traitement:

Sortie:

V) Polynésie juin 2012

(5 points)

Partie A

On considère l'algorithme suivant :

Les variables sont le réel U et les entiers naturels k et N.

Entrée

Saisir le nombre entier naturel non nul N.

Traitement

Affecter à U la valeur 0 Pour k allant de 0 à N - 1

Affecter à U la valeur 3U - 2k + 3

Fin pour

Sortie

Afficher U

Quel est l'affichage en sortie lorsque N = 3?

Partie B

On considère la suite (u_n) définie par $u_0 = 0$ et, pour tout entier naturel n, $u_{n+1} = 3u_n - 2n + 3$.

- **1.** Calculer u_1 et u_2 .
- **2. a.** Démontrer par récurrence que, pour tout entier naturel $n, u_n \ge n$.
 - **b.** En déduire la limite de la suite (u_n) .
- **3.** Démontrer que la suite (u_n) est croissante.
- **4.** Soit la suite (v_n) définie, pour tout entier naturel n, par $v_n = u_n n + 1$.
 - **a.** Démontrer que la suite (v_n) est une suite géométrique.
 - **b.** En déduire que, pour tout entier naturel n, $u_n = 3^n + n 1$.
- **5.** Soit *p* un entier naturel non nul.
 - **a.** Pourquoi peut-on affirmer qu'il existe au moins un entier n_0 tel que, pour tout $n \ge n_0$, $u_n \ge 10^p$? On s'intéresse maintenant au plus petit entier n_0 .
 - **b.** Justifier que $n_0 \le 3p$.
 - **c.** Déterminer à l'aide de la calculatrice cet entier n_0 pour la valeur p = 3.
 - **d.** Proposer un algorithme qui, pour une valeur de p donnée en entrée, affiche en sortie la valeur du plus petit entier n_0 tel que, pour tout $n \ge n_0$, on ait $u_n \ge 10^p$.

5/8

Asie juin 2012

(5 points)

1. On considère l'algorithme suivant :

	Saisir un réel strictement positif non nul <i>a</i>		
Entrée	Saisir un réel strictemenl positif non nul b ($b > a$)		
	Saisir un entier naturel non nul N		
	Affecter à u la valeur a		
Initialisation	Affecter à v la valeur b		
	Affecter à n la valeur 0		
	TANTQUE $n < N$		
	Affecter à n la valeur $n+1$		
	Affecter à u la valeur $\frac{a+b}{2}$		
Traitement	Affecter à u la valeur $\frac{a+b}{2}$ Affecter à v la valeur $\sqrt{\frac{a^2+b^2}{2}}$		
	Affecter à a la valeur u		
	Affecter à b la valeur v		
Sortie	Afficher u , afficher v		

Reproduire et compléter le tableau suivant, en faisant fonctionner cet algorithme pour a = 4, b = 9etN = 2. Les valeurs successives de u et v seront arrondies au millième.

n	a	b	и	υ
0	4	9		
1				
2				

Dans la suite, a et b sont deux réels tels que 0 < a < b.

On considère les suites (u_n) et (v_n) définies par :

 $u_0 = a$, $v_0 = b$ et, pour tout entier naturel n:

$$u_{n+1} = \frac{u_n + v_n}{2}$$
 et $v_{n+1} = \sqrt{\frac{u_n^2 + v_n^2}{2}}$

- **a.** Démontrer par récurrence que, pour tout entier naturel n, on a : $u_n > 0$ et $v_n > 0$.
 - **b.** Démontrer que, pour tout entier naturel $n: v_{n+1}^2 u_{n+1}^2 = \left(\frac{u_n v_n}{2}\right)^2$. En déduire que, pour tout entier naturel n, on a $u_n \le v_n$.
- **a.** Démontrer que la suite (u_n) est croissante. 3.
 - **b.** Comparer v_{n+1}^2 et v_n^2 . En déduire le sens de variation de la suite (v_n) .
- **4.** Démontrer que les suites (u_n) et (v_n) sont convergentes.

VI) Centres étrangers juin 2012

(5 points)

On considère la suite (I_n) définie pour n entier naturel non nul par :

$$I_n = \int_0^1 x^n e^{x^2} dx.$$

- **1. a.** Soit *g* la fonction définie par $g(x) = xe^{x^2}$. Démontrer que la fonction G définie sur \mathbb{R} par $G(x) = \frac{1}{2}e^{x^2}$ est une primitive sur \mathbb{R} de la fonction g.
 - **b.** En déduire la valeur de I₁.
 - **c.** À l'aide d'une intégration par parties, démontrer que, pour tout entier naturel *n*, supérieur ou égal à 1, on a :

$$I_{n+2} = \frac{1}{2}e - \frac{n+1}{2}I_n.$$

- **d.** Calculer I₃ et I₅.
- 2. On considère l'algorithme suivant :

Initialisation	Affecter à n la valeur 1 Affecter à u la valeur $\frac{1}{2}e - \frac{1}{2}$
	Tant que $n < 21$ Affecter à u la valeur $\frac{1}{2}$ e $-\frac{n+1}{2}u$ Affecter à n la valeur $n+2$
Sortie	Afficher u

Quel terme de la suite (I_n) ontient-on en sortie de cet algorithme?

- **3. a.** Montrer que, pour tout entier naturel non nul n, $I_n \ge 0$.
 - **b.** Montrer que la suite (I_n) est décroissante.
 - **c.** En déduire que la suite (I_n) est convergente. On note ℓ sa limite.
- **4.** Dans cette question toute trace de recherche, même incomplète, ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.

Déterminer la valeur de ℓ .

VII) Antilles-Guyane juin 2012

(5 points)

Les cinq questions sont indépendantes.

1. Dans un lycée donné, on sait que 55 % des élèves sont des filles. On sait également que 35 % des filles et 30 % des garçons déjeunent à la cantine.

On choisit, au hasard, un élève du lycée.

Quelle est la probabilité que cet élève ne déjeune pas à la cantine?

- **2.** Une urne contient 10 jetons numérotés de 1 à 10, indiscernables au toucher. On tire 3 jetons simultanément. Combien de tirages différents peut-on faire contenant au moins un jeton à numéro pair? 3.
- 3. Une variable aléatoire Y suit une loi binomiale de paramètres 20 et $\frac{1}{5}$.

 Calculer la probabilité que Y soit supérieure ou égale à 2. Donner une valeur approchée du résultat à 10^{-3} .
- 4. Un appareil ménager peut présenter après sa fabrication deux défauts.

On appelle A l'évènement « l'appareil présente un défaut d'apparence » et F l'évènement « l'appareil présente un défaut de fonctionnement ».

On suppose que les évènements A et F sont indépendants.

On sait que la probabilité que l'appareil présente un défaut d'apparence est égale à 0,02 et que la probabilité que l'appareil présente au moins l'un des deux défauts est égale à 0,069.

On choisit au hasard un des appareils. Quelle est la probabilité que l'appareil présente le défaut F?

5. On considère l'algorithme :

```
A et C sont des entiers naturels,
C prend la valeur 0
Répéter 9 fois
A prend une valeur aléatoire entière entre 1 et 7.
Si A > 5 alors C prend la valeur de C + 1
Fin Si
Fin répéter
Afficher C.
```

Dans l'expérience aléatoire simulée par l'algorithme précédent, on appelle X la variable aléatoire prenant la valeur C affichée.

Quelle loi suit la variable X? Préciser ses paramètres.