Interrogation N°7

Exercice 1. ROC : Démontrer les propriétés du cours suivantes

(4 points)

On suppose connue la relation de Chasles pour les angles de vecteurs.

Corollaire 1. Pour tous vecteurs non nuls \vec{u} et \vec{v} on a :

1.
$$(\overrightarrow{u}, \overrightarrow{v}) = -(\overrightarrow{v}, \overrightarrow{u})(2\pi)$$

2.
$$(-\overrightarrow{u}, \overrightarrow{v}) = (\overrightarrow{u}, \overrightarrow{v}) + \pi(2\pi)$$

Exercice 2. (2 points)

Dessiner un cercle trigonométrique (unité graphique 2 cm), muni d'un repère $(O; \vec{i}; \vec{j})$. Placer dessus les points associés aux réels :

$$\frac{\pi}{3}$$
 ; $\frac{4\pi}{3}$; $\frac{3\pi}{4}$; $-\frac{\pi}{4}$

Exercice 3. (1 points)

Convertir 135° en radians et $\frac{19\pi}{60}$ rad en degrés.

Exercice 4. (2 points)

Donner la mesure principale en radians des angles suivants :

$$\frac{15\pi}{3} \qquad ; \qquad -\frac{13\pi}{4}$$

Interrogation N°7

Exercice 1. ROC: Démontrer les propriétés du cours suivantes

(4 points)

On suppose connue la relation de Chasles pour les angles de vecteurs.

Corollaire 2. Pour tous vecteurs non nuls \vec{u} et \vec{v} et pour tout $k \neq 0$ on a :

1.
$$(k\overrightarrow{u}, k\overrightarrow{v}) = (\overrightarrow{u}, \overrightarrow{v})(2\pi)$$

2.
$$(-\overrightarrow{u}, -\overrightarrow{v}) = (\overrightarrow{u}, \overrightarrow{v})(2\pi)$$

Exercice 2. (2 points)

Dessiner un cercle trigonométrique (unité graphique 2 cm), muni d'un repère $(O; \vec{i}; \vec{j})$. Placer dessus les points associés aux réels :

$$\frac{\pi}{4}$$
 ; $\frac{5\pi}{4}$; $\frac{2\pi}{3}$; $-\frac{\pi}{3}$

Exercice 3. (1 points)

Convertir 125° en radians et $\frac{17\pi}{90}$ rad en degrés.

Exercice 4. (2 points)

Donner la mesure principale en radians des angles suivants :

$$\frac{12\pi}{4}$$
 ; $-\frac{16\pi}{3}$